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Abstract

In the analog VLSI implementation of neural systems, it is sometimes convenient to build
lateral inhibition networks by using a locally connected on-chip resistive grid. A serious
problem of unwanted spontaneous oscillation often arises with these circuits and renders
them unusable in practice. This paper reports a design approach that guarantees such a
system will be stable, even though the values of designed elements in the resistive grid may
be imprecise and the location and values of parasitic elements may be unknown. The
method is based on a mathematical analysis using Tellegen's theorem and the Popov
criterion. The criteria are local in the sense that no overall analysis of the interconnected
system is required for their use, empirical in the sense that they involve only measurable
frequency response data on the individual cells, and robust in the sense that they are not
affected by unmodelled parasitic resistances and capacitances in the interconnect network.
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Abstract r- -

In the analog VLSI implementation of neural systems,Am 1 Ap

it is sometimes convenient to build lateral inhibition net-
works by using a locally connected on-chip resistive grid.
A serious problem of unwanted spontaneous oscillation + +

often arises with these circuits and renders them unus- I
able in practice. This paper reports a design approach 1Isdhtlight
that guarantees such a system will be stable, even though I to simikir
the values of designed elements in the resistive grid may I I clls
be imprecise and the location and values of parasitic ei-
ements may be unknown. The method is based on a
mathematical analysis using Tellegen's theorem and the V."
Popov criterion. Tie criteria are local in the sense that no
overall analysis of the interconnected system is required Figure 1: This photoreceptor and signal processor cir-
for their use, empirical in the sense that they involve cuit, using two MOS amplifiers, realizes lateral inhibition
only measurable frequency response data on the individ- by communicating with similar cells through a resistive
ual cells, and robust in the sense that they are not affected grid.
by unmodelled parasitic resistances and capacitances in
the interconnect network.

segmentation [4,5]. Networks of this type can be divided

I. Introduction into two classes: feedback systems and feedforward-only
systems. In the feedforward case one set of amplifiers

The term "lateral inhibition" first arose in neurophys- imposes signal voltages or currents on the grid and an-
iology to describe a common form of neural circuitry in other set reads out the resulting response for subsequent
which the output of each neuron in some population is processing, while the same amplifiers both "write to" the
used to inhibit the response of each of its neighbors. Per- grid and "read from" it in a feedback arrangement. Feed-
haps the best understood example is the horizontal cell forward networks of this type are inherently stable, but
layer in the vertebrate retina, in which lateral inhibition feedback networks need not be.
simultaneously enhances intensity edges and acts as an A practical example is one of Carver Mead's retina
automatic gain control to extend the dynamic range of chips [3] that achieves edge enhancement by means of lat-
the retina as a whole [1]. The principle has been used eral inhibition through a resistive grid. Figure I shows a
in the design of artificial neural system algorithms by single cell in a continuous-time version of this chip, and
Kohonen [2] and others and in the electronic design of Fig. 2 illustrates the network of interconnected cells.
neural chips by Carver Mead et. al. [3,4]. Note that the voltage on the capacitor in any given cell

In the VLSI implementation of neural systems, it is is affected both by the local light intensity incident on
convenient to build lateral inhibition networks by using that cell and by the capacitor voltages on neighboring
a locally connected on-chip resistive grid. Linear resis- cells of identical design. Each cell drives its neighbors,
tors fabricated in, e.g., polysilicon, could yield a very which drive both their distant neighbors and the original
compact realization, and nonlinear resistive grids, made cell in turn. Thus the necessary ingredients for instabil-
from MOS transistors, have been found useful for image itar - active elements and signal feedback - are both
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Figure 3: Elementary model for an MOS amplifier.
These amplifiers have a relatively high output resistance,

Figure 2: Interconnection of cells through a hexagonal re- wihi eemndb isstig(o hw)

sistive grid. Cells are drawn as 2-terminal elements with
the power supply and signal output lines suppressed. The achieved in practice, suice to guarantee robust stabil-
grid resistors will be nonlinear by design in many such ity of the linear network model, and ii) an extension
circuits. of the analysis to the nonlinear domain that furthermore

rules out sustained large-signal oscillations under certain
present in this system. Experiment has shown that the conditions.
individual cells in this system are open-circuit stable and Note that the work reported here does not apply di-
remain stable when the output of amp # 2 is connected rectly to networks created by interconnecting neuron-like
to a voltage source through a resistor, but the intercon- elements, as conventionally described in the literature on

nected system oscillates so badly that the original design atfca erlsses hog eitv rd h
is essentially unusable in practice with the lateral inhibi- "neurons" in, e.g., a Hopfield network [10] are unilateu |
tion paths enabled (6]. Such oscillations tan readily occur 2-port elements in which the input and output are bo /

in most resistive grid circuits with active elements and voltage signals. The input voltage uniquely and instanF
feedback, even when each individual cell is quite stable. taneously determines the output voltage of such a *neuron
Analysis of the conditions of instability by conventional model, but the output can only affect the input via the
methods appears hopeless, since the number of simulta- resistive grid. In contrast, the cells in our system are I-

neouly ctie fedbak lops s eormus.port electrical elements (temporarily ignoring the optical
This paper reports a practical design approach that input channel) in which the port voltage and port cur-

rigorously guarantees such a system will be stable. The rent are the two relevant signals, and each signal affects
workbegns iththe aiv obervtiontha th sytem the other through the cell's internal dynamics (modelled

would be stable if we could design each individual cell as a Theyvie equivalent impedance) as well as through
so that, although internally active, it acts like z. passive the grid's response.

system as seen from the resistive grid. The design goal1.ThLierhoy
in that case would be that each cell's output impedanceI.ThLierhoy
s h o u ld b e a po s itiv e -me a t [7 ,8 , an d 9 , p . 1 7 4 1 fu n c tio n .h s w r a o i a e y t e f l o i g l n a n lTis is sometimes possible in practice; we will show that ysis or wa s e oti d the itin ing . nar anntalthe original network in Fig. I satisfies this condition in approximatione tor the circpt aditn c .1o the celliwethe absence of certain parasitic elements. Furthermore, it uprois ont the elmnaymdlowt n itnc g3for the amli-w
is a condition one can verify experimentally by frequency- fiesadslf the cimet r cui mode posog wihin. a sornthe cel-
response measurements. (irn piythousoeevn cifrttopoon)ya within in g.lIt is obvious that a collection of cells that appear pas- 4.

sive at their terminals will form. a stable system when 4
interconnected through a passive medium such as a re- Straightforar calculations show that the output ad-
sistive grid, and that the stability of such a system is ro- mittance is

bust to perturbations by passive parasitic elements in the
network. The contribution of this paper is to go beyond -1 9MB A RoMthat observation to provide i) a demonstration that the Y() ff  z+ R + sJ] +(1+soo )' (

passivity or positive-real condition is much stronger than
we actually need and that weaker conditions, more easily which is positive-real.

. ! --



BO(w) such that 0 8(w) > -900 and LZ,,(jw)- (jw) <
I90, ,n =1, 2,..., N.

IAn equivalent statement of this last condition is that
+l !the Nyquist plot of each cell's output impedance for w >

+ Z (S) 0 never intersects the closed 2nd quadrant, and that no
two cells' output impedance phase angles can ever differ

AmP *1 by as much as 180*. If all the active cells are designed
identically and fabricated on the same chip, their phase

Sangles should track fairly closely in practice, and thus
- - - - - - - - - this second condition is a natural one.

Figure 4: Simplified network topology for the circuit in The theorem is intuitively reasonable. The assump-

Fig. 1. The capacitor that appears explicitly in Fig. I tions guarantee that the cells cannot resonate with one

has been absorbed into Co. another at any purely sinusoidal frequency s = jw
since their phase angles can never differ by as much
as 1800, and they can never resonate with the resis-

Of course this model is oversimplified, since the cir- tors and capacitors since there is no w > 0 at which
cuit does oscillate. Transistor parasitics and layout par- both Re(Z,(jw)} :5 0 and Im{Z,(jw)} > 0 for some
asitics cause the output admittance of the individual ac- n, 1 < n < N. The proof formalizes this argument us-
tive cells to deviate from the form given in eq. (1), and ing conservation of complex power, extends it to rule out
any very accurate model will necessarily be quite high natural frequencies in the right-half plane as well, and
order. The following theorem shows how far one can re- shows why instabilities resulting from a repeated natural
lax the positive-real condition and still guarantee that frequency at the origin cannot occur.
the entire network is robustly stable.

Proof of Theorem 1
Terminology Let so denote a natural frequency of the network and

The terms open right-half plane and closed right-half {Vk),{Ikl denote any complex network solution at so.

plane refer to the set of all complex numbers .s = a + jw By Tellegen's theorem [12], or conservation of complex
with a > 0 and a > 0, respectively, and the term closed power, we have
second quadrant refers to the set of complex numbers
with a < 0 and w > 0. A natural frequency ofa lin- ZVk1 =0, (2)
ear network is a complex frequency so such that, when k

all independent sources are set to zero and all branch i.e., for . 6 any pole of Z,, n - 1,...,N and So # 0,
impedances and admittances are evaluated at so, there
exists a nonzero solution for the complex branch voltages
{VkJ and currents {Ik} [11]. A lumped linear network is IlkI2Rk + E IIk 2 (seCk)- l + E I.12Z.(so) = 0 (3)
said to be stable if a) it has no natural frequencies in resistors capacitors cells
the closed right-half plane except perhaps at the origin,
and b) any natural frequency at the origin results only and for ., 6 any zero of Z,,, n = N,

in network solutions that are constant as functions of
time. (The latter condition rules out unstable transient 2 + 2.

solutions that grow polynomially in time resulting from " ' k IV+ sC,, + -IVkJ Y (G.) = 0 , (4)

a repeated natural frequency at the origin.) resistors capacitors cells

where the superscript * denotes the complex conjugate

Theorem 1 operation. The proof is completed in the following three
parts, which together rule out the existence of any natu-

Consider the class of linear networks of arbitrary topol- ral frequencies in the closed right-half plane (except pos-
ogy, consisting of any number of positive 2-terminal resis- sibly for a single one at the origin).
tors and capacitors and of N lumped linear impedances
Z,(s), i= 1,2,...,N, that are open- and short-circuit Part i)

S stable in isolation, i.e., that have no poles or zeroes in
the closed right-half plane. Every such network is sta- This part shows that there are no natural frequencies at
ble if at each frequency w > 0 there exists a phase angle so = jw 6 0. For each w > 0 all the cell impedance values



Closed Second For each cell having a Z,,(s) of relative degree less than
Quadrant zero, add a series resistance R; for all other cells and for

Im[Z(jw)) capacitors, add a parallel conductance G to each. Call/each resulting pair a "composite element", and choose
R = G = A > 0. For A sufficiently large all natural fre-
quencies must lie in the open left-half plane since every
branch element is strictly passive for A sufficiently large.

-t Since the natural frequencies are continuous functiojls of
/a s A[13] and Re{s} > 0 for A = 0, there exists some A > 0

for which some natural frequency 54 lies on the imagi-

tZ " w)) nary axis. But this is ruled out by the proof in part i)
.- RetZ(jw) unless 91 = 0, and the argument in part ii) rules out

/i = 0, since any network solution at 4 = 0 consists of
O.W) zero branch voltages except for capacitor branches, and

(JwC,) s for A > 0 each capacitor has a positive conductance G
in parallel with it. Since the voltage across every G is
zero in such a network solution, all branch voltages (and
thus all branch currents) in that solution must be zero,
which is a contradiction because a natural frequency at

Figure 5: Illustration for the proof of Theorem 1. 31 implies the existence of a nonzero solution.

III. Stability Result for Networks with
lie strictly below and to the right of a half-space bound- Nonlia Resstor NtCapacit

ary passing through the origin of the complex plane at

an angle 8(w) + 900 with the real positive axis, as shown The previous results for linear networks can afford
in Fig. 5. The capacitor impedances {(jwCk) -1 } and some limited insight into the behavior of nonlinear net-
the resistor impedances {Rk) also lie below and to the works. If a linearized model is stable, then the equiLib-
right of this line. Thus no positive linear combination rium point of the original nonlinear network is locally
of these impedances can vanish as required by (3). A stable. But the result in this section, in contrast, applies
similar argument holds for w < 0. to the full nonlinear circuit model and allows one to con-

clude that in certain circumstances the network cannot
Part ii) oscillate even if the initial state is arbitrarily far from the

This part shows that there cannot exist a repeated natu- equilibrium point.

ral frequency at the origin that leads to a time-dependent
solution. The assumptions that the cell impedances Terminology
have no jw-axis zeroes and that their Nyquist plots for We say that a function y = f(x) lies in the sector ia,b] if
w > 0 never intersect the closed 2nd quadrant imply ax 2 < (Z) < bx2 . And we say that an impedance Z(s)
that Y,(0) > 0, n = 1 ... ,N. Thus (4) requires that satisfies the Popov criterion if (1 + rs)Z(s) is positive
all the voltages across resistor branches and cell output real (7,8,and 9, p. 1741 for some r > 0. (Note that this
branches must vanish in any complex network solution at formulation of the Popov criterion differs slightly from
so = 0. Thus only capacitor voltages can be nonzero and that given in standard references [8 and 9, p. 186].)
the network solution will be unaltered if all non-capacitor
branches are replaced by short circuits. But every so-
lution to a network comprised only of positive, linear
2-terminal capacitors is constant in time (and hence sta- Consider a network consisting of possibly nonlinear
ble). resistors and capacitors and cells with linear output

impedances Z,(s),n = 1,2,...,N. Suppose

Part iii) i) the resistor curves are continuous functions ik =

This part uses a homotopy argument to show that there gk(vk) where gk lies in the sector [0, G.J,GU. > 0, for
are no natural frequencies in the open right-half plane. all resistors,
Assume the contrary, i.e., that there exists such a net- ii) the capacitors are characterized by continuous func-
work with a natural frequency .i with Re{s1 > 0. Alter tions ij, = Ck(vk)vok where 0 5 ck(vh) 5 Cn. for all k
each element in the network (except resistors) as follows, and vk, and



. iii) the impedances Zn(s) all satisfy the Popov criterion
for some common value of r > 0. Then the network is r I 2

stable in the sense that, for any initial condition, k if(t)dt - Ek(q(O) < ik(t)[Vk(t) + r*'k(t)]dt.

i2 (t)(12)

0 ) < oo. (5) And for the cells, the assumption that (1 + rs)Z,,(s) is
all resistors positive real implies that

Outline of Proof

By Tellegen's theorem, for any set of initial conditions I0Tin(t)[v(t) + rO.(t)]dt >_ -En(O), (13)
and any time T > 0, where En(0) is the initial "energy" in the mathematically

f T constructed impedance (I + rs)Z,,(s) at t = 0, a function
0 I (vk(t) + rVk(t))ik(t)dt + of the initial conditions only. Substituting (9), (12) and

resstor (13) into (6) yields
jT i (v4(t) + r7tk(t))ik(t)dt +

cap ato rs G -1 .T o i (t)dt + r f T E i (t)dt <
mx0resistors C capacitors

f Z (vk(t) + -k(t))ik(t)dt = 0. (6)
cell impedance, r , Ok(Vk(O))+ 1 Ek(qk())+"E.(0), (14)

For resistors, multiplying the sector inequality vg(v) < eistor capWtors ceus

Gnxv2 by ; > 0 yields i 2 = ig(v) < Gm.xiv, and hence where the right hand side is a function only of the initial

T T conditions. Thus (5) holds. a
G- i I(t)dt ik(t)vk(t)dt = Note that Thin. 2, as it is stated, applies only to
0 onetworks in which the voltage source waveform of each

cell's Thev~nin equivalent circuit is identically zero. In
fT ik(t)[vk(t)+rtk(t)]dt -rk(Vk(T)) -k(Vk(O)] (7) practice, these voltages are generally nonzero and change

Jo with time. Yet a necessary condition for design is
that the circuit be stable for constant Thev6nin voltages

where (which would result from a constant light input). If this

f v  0condition is met, then the effect of time variation can be

= gk(V)dv 0 (8) thought of as an issue separate from stability and related

is the resistor co-content. Using the inequality (8) in (7) to the convergence rate of the network towards a "time-

yields for each resistor dependent equilibrium point." Thus, it is appropriate to
extend Thin. 2 to include the case of cells that have
arbitrary but constant Thev6nin voltages. This can beI0T  Tf

T  done simply by requiring the resistor curves to satisfy the
G;a i(t)dt-rck(vd0)) _ ik(t)[vk(t)+r-t(t)]dt, sector condition i) of the theorem about all possible equi-

(9) lbrium points. Even if there is no known restriction on
For capacitors, integrating the inequality i2 = the set of equilibrium points, the sector condition will be
Ck(vk)f :< C.Ck(vk)6j, yields satisfied at every equilibrium point if all the gk's are non-

T iT decreasing differentiable functions with bounded slope.

-)dt < r/f Ck(vk)62(t)dt =
- CIV. Concluding Remarks

The design criteria presented here are simple and prac-
foik(t)[k(t) + rk(i)dt- [Ek(qk(T) - Ek(qk(0)], (10) tical, though at present their validity is restricted to lin-

ear models of the cells. There are several areas of further
where work to be pursued, one of which is an analysis of the cell

q £that includes amplifier clipping effects. Others include
Ek(q) = vk(q')dq' 2_ 0 (11) the synthesis of a compensator for the cell, an extension

JO of the nonlinear result to include impedance multipliers
is the capacitor energy. Using the inequality (11) in (10) other than the Popov operator, a bound on the network
yields for each capacitor settling time when the optical input is constant, and a



bound on the L2 norm of the resistor and capacitor cur- 13. M. Marden, Geometry of Polynomials, American
rents in terms of the L 2 norm of the Thevinin equivalent Mathematical Society, Providence, RI, no. 3, 1985, pp.
cell voltage waveforms when the optical input is time- 4-5.
varying.
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